X^2+4x+4=168

Simple and best practice solution for X^2+4x+4=168 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+4x+4=168 equation:



X^2+4X+4=168
We move all terms to the left:
X^2+4X+4-(168)=0
We add all the numbers together, and all the variables
X^2+4X-164=0
a = 1; b = 4; c = -164;
Δ = b2-4ac
Δ = 42-4·1·(-164)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{42}}{2*1}=\frac{-4-4\sqrt{42}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{42}}{2*1}=\frac{-4+4\sqrt{42}}{2} $

See similar equations:

| y/25=26 | | 2r=208 | | 2r=162 | | X+3-3x-1/4=1 | | 20x=15x+15 | | 180=10h | | 7(v+2)=-2(7v-1)+6v | | 11g=473 | | n^2(n+1)=150 | | d14=17 | | 3r/5=36/15 | | 25j=575 | | 37.4-j=-12.5 | | -12=x•3 | | 22w=990 | | d-10=40 | | v/20=7/10 | | 13t=338 | | 34t−4​ =1 | | 2z+z+5z=4 | | 2(2x+2)=6 | | m/11=25 | | (7+y)(5y-2)=0 | | v/20=v/10 | | 319=29j | | 52/10=4g | | 5x2-23x+120=4x2 | | 5j=795 | | 452i-124=-98 | | 22/6=x/15 | | -3p+8=5-(12+4) | | 15x2+11x−11=0 |

Equations solver categories